33 research outputs found

    Derivational Complexity and Context-Sensitive Rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of rewriting where reduction steps are allowed on specific arguments mu(f) subset of {1, ..., k} of k-ary function symbols f only. Terms which cannot be further rewritten in this way are called mu-normal forms. For left-linear term rewriting systems (TRSs), the so-called normalization via mu-normalization procedure provides a systematic way to obtain normal forms by the stepwise computation and combination of intermediate mu-normal forms. In this paper, we show how to obtain bounds on the derivational complexity of computations using this procedure by using bounds on the derivational complexity of context-sensitive rewriting. Two main applications are envisaged: Normalization via mu-normalization can be used with non-terminating TRSs where the procedure still terminates; on the other hand, it can be used to improve on bounds of derivational complexity of terminating TRSs as it discards many rewritings.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Derivational Complexity and Context-Sensitive Rewriting. Journal of Automated Reasoning. 65(8):1191-1229. https://doi.org/10.1007/s10817-021-09603-11191122965

    Applications and extensions of context-sensitive rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of term rewriting which is obtained by imposing replacement restrictions on the arguments of function symbols. It has proven useful to analyze computational properties of programs written in sophisticated rewriting-based programming languages such asCafeOBJ, Haskell, Maude, OBJ*, etc. Also, a number of extensions(e.g., to conditional rewritingor constrained equational systems) and generalizations(e.g., controlled rewritingor forbidden patterns) of context-sensitive rewriting have been proposed. In this paper, we provide an overview of these applications and related issues. (C) 2021 Elsevier Inc. All rights reserved.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Applications and extensions of context-sensitive rewriting. Journal of Logical and Algebraic Methods in Programming. 121:1-33. https://doi.org/10.1016/j.jlamp.2021.10068013312

    Using Well-Founded Relations for Proving Operational Termination

    Full text link
    [EN] In this paper, we study operational termination, a proof theoretical notion for capturing the termination behavior of computational systems. We prove that operational termination can be characterized at different levels by means of well- founded relations on specific formulas which can be obtained from the considered system. We show how to obtain such well-founded relations from logical models which can be automatically generated using existing tools.Partially supported by the EU (FEDER), Projects TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/013.Lucas Alba, S. (2020). Using Well-Founded Relations for Proving Operational Termination. Journal of Automated Reasoning. 64(2):167-195. https://doi.org/10.1007/s10817-019-09514-2S167195642Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10, LNCS, vol. 6486, pp. 201–208, Springer (2011)Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I.: Sentence-normalized conditional narrowing modulo in rewriting logic and Maude. J. Automat. Reason. 60(4), 421–463 (2018)Arts, T., Giesl, J.: Proving innermost normalisation automatically. In: Proceedings of RTA’97, LNCS, vol. 1232, pp. 157–171, Springer, Berlin (1997)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS, vol. 4350, Springer (2007)Durán, F., Lucas, S., Meseguer, J.: Methods for proving termination of rewriting-based programming languages by transformation. Electron. Notes Theor. Comput. Sci. 248, 93–113 (2009)Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High. Order Symb. Comput. 21(1–2), 59–88 (2008)Falke, S., Kapur, D.: Operational termination of conditional rewriting with built-in numbers and semantic data structures. Electron. Notes Theor. Comput. Sci. 237, 75–90 (2009)Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32 (1967)Giesl, J., Arts, T.: Verification of Erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12, 39–72 (2001)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proceedings of LPAR’04, LNAI, vol. 3452, pp. 301–331 (2004)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Proceedings of IJCAR’06, LNAI, vol. 4130, pp. 281–286 (2006)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87, LNCS, vol. 250, pp. 1–22 (1987)Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 217–273 (1992)Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical models of order-sorted first-order theories. In: Proceedings of PROLE’16, pp. 215–230 (2016)Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Proceedings of RTA 2009, LNCS, vol. 5595, pp. 295–304 (2009)Lalement, R.: Computation as Logic. Masson-Prentice Hall International, Paris (1993)Lucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002)Lucas, S.: Use of logical models for proving operational termination in general logics. In: Selected Papers from WRLA’16, LNCS, vol. 9942, pp. 1–21 (2016)Lucas, S.: Directions of operational termination. In: Proceedings of PROLE’18. http://hdl.handle.net/11705/PROLE/2018/009 (2018). Accessed 9 Feb 2019Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Proceedings of PPDP’14, pp. 111–122. ACM Digital Library (2014)McCune, W.: Prover9 & Mace4. http://www.cs.unm.edu/~mccune/prover9/ (2005–2010). Accessed 9 Feb 2019Mendelson, E.: Introduction to Mathematical Logic, 4th edn. Chapman & Hall, London (1997)Meseguer, J.: General logics. In: Logic Colloquium’87, pp. 275–329 (1989)O’Donnell, M.J.: Equational Logic as a Programming Language. The MIT Press, Cambridge (1985)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Berlin (2002)Prawitz, D.: Natural Deduction. A Proof Theoretical Study. Almqvist & Wiksell, 1965. Reprinted by Dover Publications (2006)Rosu, G., Stefanescu, A., Ciobaca, S., Moore, B.M.: One-path reachability logic. In: Proceedings of LICS 2013, pp. 358–367. IEEE Press (2013)Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order Logic. Clarendon Press, Oxford (1991)Schernhammer, F., Gramlich, B.: Characterizing and proving operational termination of deterministic conditional term rewriting systems. J. Log. Algebr. Program. 79, 659–688 (2010)Serbanuta, T., Rosu, G.: Computationally equivalent elimination of conditions. In: Proceedings of RTA’06, LNCS, vol. 4098, pp. 19–34. Springer, Berlin (2006)Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67–69 (1949

    The origins of the halting problem

    Full text link
    [EN] The halting problem is a prominent example of undecidable problem and its formulation and undecidability proof is usually attributed to Turing's 1936 landmark paper. Copeland noticed in 2004, though, that it was so named and, apparently, first stated in a 1958 book by Martin Davis. We provide additional arguments partially supporting this claim as follows: (i) with a focus on computable (real) numbers with infinitely many digits (e.g., pi), in his paper Turing was not concerned with halting machines; (ii) the two decision problems considered by Turing concern the ability of his machines to produce specific kinds of outputs, rather than reaching a halting state, something which was missing from Turing's notion of computation; and (iii) from 1936 to 1958, when considering the literature of the field no paper refers to any "halting problem" of Turing Machines until Davis' book. However, there were important preliminary contributions by (iv) Church, for whom termination was part of his notion of computation (for the lambda-calculus), and (v) Kleene, who essentially formulated, in his 1952 book, what we know as the halting problem now.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098.Lucas Alba, S. (2021). The origins of the halting problem. Journal of Logical and Algebraic Methods in Programming. 121:1-9. https://doi.org/10.1016/j.jlamp.2021.1006871912

    Normal forms and normal theories in conditional rewriting

    Full text link
    this is the author’s version of a work that was accepted for publication in Journal of Logical and Algebraic Methods in Programming. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Logical and Algebraic Methods in Programming vol. 85 (2016) DOI 10.1016/j.jlamp.2015.06.001We present several new concepts and results on conditional term rewriting within the general framework of order-sorted rewrite theories (OSRTs), which support types, subtypes and rewriting modulo axioms, and contains the more restricted framework of conditional term rewriting systems (CTRSs) as a special case. The concepts shed light on several subtle issues about conditional rewriting and conditional termination. We point out that the notions of irreducible term and of normal form, which coincide for unconditional rewriting, have been conflated for conditional rewriting but are in fact totally different notions. Normal form is a stronger concept. We call any rewrite theory where all irreducible terms are normal forms a normal theory. We argue that normality is essential to have good executability and computability properties. Therefore we call all other theories abnormal, freaks of nature to be avoided. The distinction between irreducible terms and normal forms helps in clarifying various notions of strong and weak termination. We show that abnormal theories can be terminating in various, equally abnormal ways; and argue that any computationally meaningful notion of strong or weak conditional termination should be a property of normal theories. In particular we define the notion of a weakly operationally terminating (or weakly normalizing) OSRT, discuss several evaluation mechanisms to compute normal forms in such theories, and investigate general conditions under which the rewriting-based operational semantics and the initial algebra semantics of a confluent, weakly normalizing OSRT coincide thanks to a notion of canonical term algebra. Finally, we investigate appropriate conditions and proof methods to ensure that a rewrite theory is normal; and characterize the stronger property of a rewrite theory being operationally terminating in terms of a natural generalization of the notion of quasidecreasing order. (C) 2015 Elsevier Inc. All rights reserved.We thank the anonymous referees for their constructive criticism and helpful comments. This work has been partially supported by NSF grant CNS 13-19109. Salvador Lucas' research was developed during a sabbatical year at UIUC and was also supported by the EU (FEDER), Spanish MINECO projects TIN2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and GV grant BEST/2014/026 and project PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2016). Normal forms and normal theories in conditional rewriting. Journal of Logical and Algebraic Methods in Programming. 85(1):67-97. https://doi.org/10.1016/j.jlamp.2015.06.001S679785

    Strong and weak operational termination of order-sorted rewrite theories

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-12904-4 10This paper presents several new results on conditional term rewriting within the general framework of order-sorted rewrite theories (OSRTs) which contains the more restricted framework of conditional term rewriting systems (CTRSs) as a special case. The results uncover some subtle issues about conditional termination. We first of all generalize a previous known result characterizing the operational termination of a CTRS by the quasi-decreasing ordering notion to a similar result for OSRTs. Second, we point out that the notions of *irreducible* term and of *normal form*, which coincide for unsorted rewriting are *totally different* for conditional rewriting and formally characterize that difference. We then define the notion of a *weakly operationally terminating* (or *weakly normalizing*) OSRT, give several evaluation mechanisms to compute normal forms in such theories, and investigate general conditions under which the rewriting-based operational semantics and the initial algebra semantics of a confluent OSRT coincide thanks to a notion of *canonical term algebra*. Finally, we investigate appropriate conditions and proof methods to ensure good executability properties of an OSRT for computing normal forms.Research partially supported by NSF grant CNS 13-19109. Salvador Lucas’ research was developed during a sabbatical year at the CS Dept. of the UIUC and was also partially supported by Spanish MECD grant PRX12/00214, MINECO project TIN2010-21062-C02-02, and GV grant BEST/2014/026 and project PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2014). Strong and weak operational termination of order-sorted rewrite theories. En Rewriting Logic and Its Applications. Springer Verlag (Germany). 178-194. https://doi.org/10.1007/978-3-319-12904-4_10S17819

    2D Dependency Pairs for Proving Operational Termination of CTRSs

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-12904-4_11The notion of *operational termination* captures nonterminating computations due to subsidiary processes that are necessary to issue a *single* `main' step but which often remain `hidden' when the main computation sequence is observed. This highlights *two dimensions* of nontermination: one for the infinite sequencing of computation steps, and the other that concerns the proof of some single steps. For conditional term rewriting systems (CTRSs), we introduce a new *dependency pair framework* which exploits the *bidimensional* nature of conditional rewriting (rewriting steps + satisfaction of the conditions as reachability problems) to obtain a powerful and more expressive framework for proving operational termination of CTRSs.Lucas Alba, S.; Meseguer, J. (2014). 2D Dependency Pairs for Proving Operational Termination of CTRSs. En Rewriting Logic and Its Applications. Springer Verlag (Germany). 195-212. doi:10.1007/978-3-319-12904-4_11S19521

    Automatic Synthesis of Logical Models for Order-Sorted First-Order Theories

    Full text link
    [EN] In program analysis, the synthesis of models of logical theories representing the program semantics is often useful to prove program properties. We use order-sorted first- order logic as an appropriate framework to describe the semantics and properties of programs as given theories. Then we investigate the automatic synthesis of models for such theories. We use convex polytopic domains as a flexible approach to associate different domains to different sorts. We introduce a framework for the piecewise definition of functions and predicates. We develop its use with linear expressions (in a wide sense, including linear transformations represented as matrices) and inequalities to specify functions and predicates. In this way, algorithms and tools from linear algebra and arithmetic constraint solving (e.g., SMT) can be used as a backend for an efficient implementation.Partially supported by the EU (FEDER), projects TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/ 013. R. Gutiérrez also supported by Juan de la Cierva Fellowship JCI-2012-13528.Lucas Alba, S.; Gutiérrez Gil, R. (2018). Automatic Synthesis of Logical Models for Order-Sorted First-Order Theories. Journal of Automated Reasoning. 60(4):465-501. https://doi.org/10.1007/s10817-017-9419-3S465501604Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10. LNCS, vol. 6486, pp. 201–208 (2011)Alarcón, B., Lucas, S., Navarro-Marset, R.: Using matrix interpretations over the reals in proofs of termination. In: Proceedings of PROLE’09, pp. 255–264 (2009)Albert, E., Genaim, S., Gutiérrez, R.: A Transformational Approach to Resource Analysis with Typed-Norms. Revised Selected Papers from LOPSTR’13. LNCS, vol. 8901, pp 38–53 (2013)de Angelis, E., Fioravante, F., Pettorossi, A., Proietti, M.: Proving correctness of imperative programs by linearizing constrained Horn clauses. Theory Pract. Log. Program. 15(4–5), 635–650 (2015)de Angelis, E., Fioravante, F., Pettorossi, A., Proietti, M.: Semantics-based generation of verification conditions by program specialization. In: Proceedings of PPDP’15, pp. 91–102. ACM Press, New York (2015)Aoto, T.: Solution to the problem of zantema on a persistent property of term rewriting systems. J. Funct. Log. Program. 2001(11), 1–20 (2001)Barwise, J.: An Introduction to First-Order Logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic. North-Holland, Amsterdam (1977)Barwise, J.: Axioms for Abstract Model Theory. Ann. Math. Log. 7, 221–265 (1974)Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)Birkhoff, G., Lipson, J.D.: Heterogeneous algebras. J. Comb. Theory 8, 115–133 (1970)Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: The Barcelogic SMT Solver. In: Proceedings of CAV’08. LNCS, vol. 5123, pp. 294–298 (2008)Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn-clause solvers for program verification. In: Fields of Logic and Computation II—Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday. LNCS, vol. 9300, pp. 24–51 (2015)Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn-clauses. In: Proceedings of SAS’13. LNCS vol. 7935, pp. 105–125 (2013)Bjørner, N., McMillan, K., Rybalchenko, A.: Program verification as satisfiability modulo theories. In: Proceedings of SMT’12, EPiC Series in Computing, vol. 20, pp. 3–11 (2013)Bliss, G.A.: Algebraic Functions. Dover (2004)Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: On Lexicographic Termination Ordering With Space Bound Certifications. Revised Papers from PSI 2001. LNCS, vol. 2244, pp. 482–493 (2001)Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 4th edn. Cambridge University Press, Cambridge (2002)Borralleras, C., Lucas, S., Oliveras, A., Rodríguez, E., Rubio, A.: SAT modulo linear arithmetic for solving polynomial constraints. J. Autom. Reason. 48, 107–131 (2012)Bürckert, H.-J., Hollunder, B., Laux, A.: On Skolemization in constrained logics. Ann. Math. Artif. Intell. 18, 95–131 (1996)Burstall, R.M., Goguen, J.A.: Putting Theories together to make specifications. In: Proceedings of IJCAI’77, pp. 1045–1058. William Kaufmann (1977)Caplain, M.: Finding invariant assertions for proving programs. In: Proceedings of the International Conference on Reliable Software, pp. 165–171. ACM Press, New York (1975)Chang, C.L., Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, Orlando (1973)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS 4350, (2007)Cohn, A.G.: Improving the expressiveness of many sorted logic. In: Proceedings of the National Conference on Artificial Intelligence, pp. 84–87. AAAI Press, Menlo Park (1983)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. Autom. Reason. 34(4), 325–363 (2006)Cooper, D.C.: Programs for mechanical program verification. Mach. Intell. 6, 43–59 (1971). Edinburgh University PressCooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell. 7, 91–99 (1972)Courtieu, P., Gbedo, G., Pons, O.: Improved matrix interpretations. In: Proceedings of SOFSEM’10. LNCS, vol. 5901, pp. 283–295 (2010)Cousot, P., Cousot, R., Mauborgne, L.: Logical abstract domains and interpretations. In: The Future of Sofware Engineering, pp. 48–71. Springer, New York (2011)Cousot, P., Halbwachs, N.: Automatic Discovery of linear restraints among variables of a program. In: Conference Record of POPL’78, pp. 84–96. ACM Press, New York (1978)Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)Elspas, B., Levitt, K.N., Waldinger, R.J., Waksman, A.: An assessment of techniques for proving program correctness. Comput. Surv. 4(2), 97–147 (1972)van Emdem, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Proceedings of IJCAR’06. LNCS, vol. 4130, pp. 574–588 (2006)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32 (1967)Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. In: Proceedings of RTA’08. LNCS, vol. 5117, pp. 110–125 (2008)Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving termination by dependency pairs and inductive theorem proving. J. Autom. Reason. 47, 133–160 (2011)Fuhs, C., Kop, C.: Polynomial interpretations for higher-order rewriting. In: Proceedings of RTA’12. LIPIcs, vol. 15, pp. 176–192 (2012)Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific, AMAST Series, (1998)Gaboardi, M., Péchoux, R.: On bounding space usage of streams using interpretation analysis. Sci. Comput. Program. 111, 395–425 (2015)Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination competition (termCOMP 2015). In: Proceedings of CADE’15. LNCS, vol. 9195, pp. 105–108 (2015)Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic evaluation graphs and term rewriting—a general methodology for analyzing logic programs. In: Proceedings of the PPDP’12, pp. 1–12. ACM Press (2012)Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Automated termination proofs for haskell by term rewriting. ACM Trans. Program. Lang. Syst. 33(2), 7 (2011)Gnaedig, I.: Termination of Order-sorted Rewriting. In: Proceedings of ALP’92. LNCS, vol. 632, pp. 37–52 (1992)Goguen, J.A.: Order-Sorted Algebra. Semantics and Theory of Computation Report 14, UCLA (1978)Goguen, J.A., Burstall, R.M.: Some fundamental algebraic tools for the semantics of computation. Part 1: comma categories, colimits, signatures and theories. Theoret. Comput. Sci. 31, 175–209 (1984)Goguen, J.A., Burstall, R.M.: Some fundamental algebraic tools for the semantics of computation. Part 2 signed and abstract theories. Theoret. Comput. Sci. 31, 263–295 (1984)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87. LNCS, vol. 250, pp. 1–22 (1987)Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Current Trends in Programming Methodology, pp. 80–149. Prentice Hall (1978)Goguen, J.A., Meseguer, J.: Remarks on remarks on many-sorted equational logic. Sigplan Notices 22(4), 41–48 (1987)Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoret. Comput. Sci. 105, 217–273 (1992)Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing OBJ. In: Goguen, J., Malcolm, G. (eds.) Software Engineering with OBJ: Algebraic Specification in Action. Kluwer, Boston (2000)Grebenshikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers from proof rules. In: Proceedings of PLDI’12, pp. 405–416. ACM Press (2012)Gulwani, S., Tiwari, A.: Combining Abstract Interpreters. In: Proceedings of PLDI’06, pp. 376–386. ACM Press (2006)Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification framework. In: Proceedings of CAV’15, Part I. LNCS, vol. 9206, pp. 343–361 (2015)Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical models of order-sorted first-order theories. In: Proceedings of PROLE’16, pp. 215–230 (2016). http://zenon.dsic.upv.es/ages/Hantler, S.L., King, J.C.: An introduction to proving the correctness of programs. ACM Comput. Surv. 8(3), 331–353 (1976)Hayes, P.: A logic of actions. Mach. Intell. 6, 495–520 (1971). Edinburgh University Press, EdinburghHeidergott, B., Olsder, G.J., van der Woude, J.: Max plus at work. A course on max-plus algebra and its applications. In: Modeling and Analysis of Synchronized Systems, Princeton University Press (2006)Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In: Proceedings of IJCAR 2008. LNCS, vol. 5195, pp. 364–379 (2008)Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–583 (1969)Hodges, W.: Elementary Predicate Logic. Handbook of Philosophical Logic, vol. 1, pp. 1–131. Reidel Publishing Company (1983)Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)Hofbauer, D.: Termination proofs by context-dependent interpretation. In: Proceedings of RTA’01. LNCS, vol. 2051, pp. 108–121 (2001)Hofbauer, D.: Termination proofs for ground rewrite systems. interpretations and derivational complexity. Appl. Algebra Eng. Commun. Comput. 12, 21–38 (2001)Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In: Proceedings of RTA’89. LNCS, vol. 355, pp. 167–177 (1989)Hull, T.E., Enright, W.H., Sedgwick, A.E.: The correctness of numerical algorithms. In: Proceedings of PAAP’72, pp. 66–73 (1972)Igarashi, S., London, R.L., Luckham, D.: Automatic program verification I: a logical basis and its implementation. Acta Inform. 4, 145–182 (1975)Iwami, M.: Persistence of termination of term rewriting systems with ordered sorts. In: Proceedings of 5th JSSST Workshop on Programming and Programming Languages, Shizuoka, Japan, pp. 47–56. (2003)Iwami, M.: Persistence of termination for non-overlapping term rewriting systems. In: Proceedings of Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory, Kokyuroku RIMS, University of Kyoto, vol. 1366, pp. 91–99 (2004)Katz, S., Manna, Z.: Logical analysis of programs. Commun. ACM 19(4), 188–206 (1976)Langford, C.H.: Review: Über deduktive Theorien mit mehreren Sorten von Grunddingen. J. Symb. Log. 4(2), 98 (1939)Lankford, D.S.: Some approaches to equality for computational logic: a survey and assessment. Memo ATP-36, Automatic Theorem Proving Project, University of Texas, Austin, TXLondon, R.L.: The current state of proving programs correct. In: Proceedings of ACM’72, vol. 1, pp. 39–46. ACM (1972)Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theor. Inform. Appl. 39(3), 547–586 (2005)Lucas, S.: Synthesis of models for order-sorted first-order theories using linear algebra and constraint solving. Electron. Proc. Theor. Comput. Sci. 200, 32–47 (2015)Lucas, S.: Use of logical models for proving operational termination in general logics. In: Selected Papers from WRLA’16. LNCS, vol. 9942, pp. 1–21 (2016)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inform. Proces. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Models for logics and conditional constraints in automated proofs of termination. In: Proceedings of AISC’14. LNAI, vol. 8884, pp. 7–18 (2014)Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Proceedings of PPDP’08 , pp. 108–119. ACM Press (2008)Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Proceedings of PPDP’14, pp. 111–122. ACM Digital Library (2014)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Manna, Z.: The correctness of programs. J. Comput. Syst. Sci. 3, 119–127 (1969)Manna, Z.: Properties of programs and the first-order predicate calculus. J. ACM 16(2), 244–255 (1969)Manna, Z.: Termination of programs represented as interpreted graphs. In: Proceedings of AFIPS’70, pp. 83–89 (1970)Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Proceedings of the Third Hawaii International Conference on System Science, pp. 789–792 (1970)Manna, Z., Pnueli, A.: Formalization of properties of functional programs. J. ACM 17(3), 555–569 (1970)Marion, Y.-I., Péchoux, R.: Sup-interpretations, a semantic method for static analysis of program resources. ACM Trans. Comput. Log. 10(4), 27 (2009)Martí-Oliet, N., Meseguer, J., Palomino, M.: Theoroidal maps as algebraic simulations. Revised Selected Papers from WADT’04. LNCS, vol. 3423, pp. 126–143 (2005)McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine. Part I. Commun. ACM 3(4), 184–195 (1960)Meseguer, J.: General logics. In: Ebbinghaus, H.D., et al. (eds.) Logic Colloquium’87, pp. 275–329. North-Holland (1989)Meseguer, J., Skeirik, S.: Equational formulas and pattern operations in initial order-sorted algebras. Revised Selected Papers from LOPSTR’15. LNCS, vol. 9527, pp. 36–53 (2015)Middeldorp, A.: Matrix interpretations for polynomial derivational complexity of rewrite systems. In: Proceedings of LPAR’12. LNCS, vol. 7180, p. 12 (2012)Monin, J.-F.: Understanding Formal Methods. Springer, London (2003)Montenegro, M., Peña, R., Segura, C.: Space consumption analysis by abstract interpretation: inference of recursive functions. Sci. Comput. Program. 111, 426–457 (2015)de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)Naur, P.: Proof of algorithms by general snapshots. Bit 6, 310–316 (1966)Neurauter, F., Middeldorp, A.: Revisiting matrix interpretations for proving termination of term rewriting. In: Proceedings of RTA’11. LIPICS, vol. 10, pp. 251–266 (2011)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Proceedings of ALP’96. LNCS, vol. 1139, pp. 92–106 (1996)Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analysis of java bytecode by term rewriting. In: Proceedings of RTA’10. LIPICS, vol. 6, pp. 259–276 (2010)Péchoux, R.: Synthesis of sup-interpretations: a survey. Theoret. Comput. Sci. 467, 30–52 (2013)Podelski, A., Rybalchenko, A.: Transition invariants. In: IEEE Computer Society Proceedings of LICS’04, pp. 32–41 (2004)Prestel, A., Delzell, C.N.: Positive Polynomials. From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001)Robinson, D.J.S.: A Course in Linear Algebra with Applications, 2nd edn. World Scientific Publishing, Co, Singapore (2006)Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verification. In: Proceedings of CAV’13, vol. 8044, pp. 347–363 (2013)Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Amsterdam (1986)Schmidt, A.: Über deduktive Theorien mit mehreren Sorten von Grunddingen. Matematische Annalen 115(4), 485–506 (1938)Schmidt-Schauss, M.: Computational Aspects Of An Order-Sorted Logic With Term Declarations. PhD Thesis, Fachbereich Informatik der Universität Kaiserslautern (1988)Shapiro, S.: Foundations without Foundationalism: A Case for Second-Order Logic. Clarendon Press, New York (1991)Shostak, R.E.: A practical decision procedure for arithmetic with function symbols. J. ACM 26(2), 351–360 (1979)Smullyan, R.M.: Theory of Formal Systems. Princeton University Press, Princeton (1961)Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Inform. Process. Lett. 25, 141–143 (1987)Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, University Mathematics Laboratory, Cambridge, pp. 67–69 (1949)Urban, C.: The abstract domain of segmented ranking functions. In: Proceeding of SAS’13. LNCS, vol. 7935, pp. 43–62 (2013)Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and pieces. In: Proceedings of TACAS’16. LNCS, vol. 9636, pp. 54–70 (2016)Waldmann, J.: Matrix interpretations on polyhedral domains. In: Proceedings of RTA’15. LIPICS, vol. 26, pp. 318–333 (2015)Waldmann, J., Bau, A., Noeth, E.: Matchbox termination prover. http://github.com/jwaldmann/matchbox/ (2014)Walther, C.: A mechanical solution of schubert’s steamroller by many-sorted resolution. Aritif. Intell. 26, 217–224 (1985)Wang, H.: Logic of many-sorted theories. J. Symb. Logic 17(2), 105–116 (1952)Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17, 23–50 (1994

    MU-TERM: Verify Termination Properties Automatically (System Description)

    Full text link
    [EN] We report on the new version of mu-term, a tool for proving termination properties of variants of rewrite systems, including conditional, context-sensitive, equational, and order-sorted rewrite systems. We follow a unified logic-based approach to describe rewriting computations. The automatic generation of logical models for suitable first-order theories and formulas provide a common basis to implement the proofs.Supported by EU (FEDER), and projects RTI2018-094403-B-C32,PROMETEO/ 2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). MU-TERM: Verify Termination Properties Automatically (System Description). Springer Nature. 436-447. https://doi.org/10.1007/978-3-030-51054-1_28S436447Alarcón, B., et al.: Improving context-sensitive dependency pairs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 636–651. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_44Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. Inf. Comput. 208(8), 922–968 (2010). https://doi.org/10.1016/j.ic.2010.03.003Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5_12Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A∨C{A} \vee {C}-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_4Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-8Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008). https://doi.org/10.1007/s10817-007-9087-9Giesl, J., Arts, T.: Verification of erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12(1/2), 39–72 (2001). https://doi.org/10.1007/s002000100063Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_12Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-VGutiérrez, R., Lucas, S.: Function calls at frozen positions in termination of context-sensitive rewriting. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 311–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_15Gutiérrez, R., Lucas, S.: Proving termination in the context-sensitive dependency pair framework. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 18–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_3Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility conditions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNAI, vol. 12167, pp. 416–435. Springer, Heidelberg (2020)Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Log. Program. 1998(1), 1–61 (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002). https://doi.org/10.1006/inco.2002.3176Lucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reasoning 60(4), 465–501 (2017). https://doi.org/10.1007/s10817-017-9419-3Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Antoy, S., Albert, E. (eds.) Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 15–17 July 2008, Valencia, Spain, pp. 108–119. ACM (2008). https://doi.org/10.1145/1389449.1389463Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebraic Methods Program. 86(1), 236–268 (2017). https://doi.org/10.1016/j.jlamp.2016.03.003Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020). https://doi.org/10.1007/s10817-020-09542-3McCune, W.: Prover9 & Mace4. Technical report (2005–2010). http://www.cs.unm.edu/~mccune/prover9/Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002). https://doi.org/10.1007/978-1-4757-3661-8 . http://www.springer.com/computer/swe/book/978-0-387-95250-5Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 92–106. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61735-3_6Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17(1), 23–50 (1994). https://doi.org/10.1006/jsco.1994.1003Zantema, H.: Termination of context-sensitive rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5_6

    infChecker. A Tool for Checking Infeasibility

    Full text link
    [EN] Given a Conditional Term Rewriting System (CTRS) R and terms s and t, we say that the reachability condition s ->* t is *feasible* if there is a substitution \sigma instantiating the variables in s and t such that the *reachability test* \sigma(s)->* \sigma(t) succeeds; otherwise, we call it *infeasible*. Checking infeasibility of such (sequences of) reachability conditions is important in the analysis of computational properties of CTRSs, like confluence or operational termination. Recently, a logic-based approach to prove and disprove infeasibility has been introduced. In this paper we present infChecker, a new tool for checking infeasibility which is based on such an approach.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098, and SP20180225. Raul Gutierrez was also supported by INCIBE program Ayudas para la excelencia de los equipos de investigacion avanzada en ciberseguridad.Gutiérrez Gil, R.; Lucas Alba, S. (2019). infChecker. A Tool for Checking Infeasibility. Universidade de Brasilia. 38-42. http://hdl.handle.net/10251/181069S384
    corecore